문제 링크 : www.acmicpc.net/problem/3176
[필요한 개념 : LCA (이분 탐색)]
[먼저 풀면 좋은 문제]
문제에서 N개의 도시를 N - 1개의 도로로 모두 연결한다 했으므로, 각 도시의 연결 구조는 트리 구조임을 알 수 있다.
우선 선형 시간에 LCA를 구해보며 이 문제의 답을 구해보자.
트리 구조에서 두 정점 간 경로는 유일하므로, 그 경로에 포함되는 간선들의 집합 또한 유일하다.
즉, x = Parent[x] 연산을 해나가며 그때그때 최솟값과 최댓값을 갱신해주면 쉽게 답을 구할 수 있다.
하지만, 선형 시간에 LCA를 구한다면 제한 시간 안에 답을 구할 수 없다.
N이 10만에, LCA를 찾는 쿼리 또한 10만 번이기 때문에 우리는 LCA를 이분 탐색으로 구해야 한다.
이제는 조상 노드로 거슬러 올라가는 단위가 2^k번째 꼴이기 때문에, 선형 시간에 LCA를 구할 때보다 최대, 최소 간선을 구하는 것이 복잡해진다.
이분 탐색으로 LCA를 구할 때 사용한 점화식은 아래와 같다.
Parent[x][k] = Parent[Parent[x][k - 1]][k - 1]
이 식을 그대로 응용해, 다음과 같은 접근으로 최대, 최소 간선을 구한다.
Parent_maxdist[x][k] =
max(Parent_mindist[x][k], Parent_maxdist[Parent_maxdist[x][k - 1]][k - 1])
(정점 x의 2^k번째 조상까지의 간선들 중 최대 가중치 간선, 코드의 parent_dist[0])
Parent_mindist[x][k] =
min(Parent_mindist[x][k], Parent_mindist[Parent_mindist[x][k - 1]][k - 1])
(정점 x의 2^k번째 조상까지의 간선들 중 최소 가중치 간선, 코드의 parent_dist[1])
[코드]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#define INF 99999999
using namespace std;
typedef pair<int, int> p;
vector<p> adj[100001];
int n, k, parent[100001][20], level[100001];
int parent_dist[100001][20][2];
int maxlevel;
p get_answer(int a, int b) {
bool flag = false;
int ret_max = 0, ret_min = INF;
//레벨이 더 높은 노드를 a로 둔다.
if (level[a] < level[b]) swap(a, b);
//두 노드의 레벨이 다르다면 맞춰줌
if (level[a] != level[b]) {
for (int i = maxlevel; i >= 0; i--) {
if (level[parent[a][i]] >= level[b]) {
ret_max = max(ret_max, parent_dist[a][i][0]);
ret_min = min(ret_min, parent_dist[a][i][1]);
a = parent[a][i];
}
}
}
//최소 공통 조상을 찾는다.
if (a != b) {
for (int i = maxlevel; i >= 0; i--) {
if (parent[a][i] != parent[b][i]) {
ret_max = max({ ret_max, parent_dist[a][i][0], parent_dist[b][i][0] });
ret_min = min({ ret_min, parent_dist[a][i][1], parent_dist[b][i][1] });
a = parent[a][i];
b = parent[b][i];
}
}
ret_max = max({ ret_max, parent_dist[a][0][0], parent_dist[b][0][0] });
ret_min = min({ ret_min, parent_dist[a][0][1], parent_dist[b][0][1] });
}
return { ret_min, ret_max };
}
void set_tree(int node, int pnode, int lv, int pdist) {
parent[node][0] = pnode;
parent_dist[node][0][0] = pdist; //최댓값
level[node] = lv;
if (node == 1) parent_dist[node][0][1] = INF;
else parent_dist[node][0][1] = pdist; //최솟값
for (int i = 1; i <= maxlevel; i++) {
parent[node][i] = parent[parent[node][i - 1]][i - 1];
parent_dist[node][i][0] = max(parent_dist[node][i - 1][0], parent_dist[parent[node][i - 1]][i - 1][0]);
parent_dist[node][i][1] = min(parent_dist[node][i - 1][1], parent_dist[parent[node][i - 1]][i - 1][1]);
}
for (int i = 0; i < adj[node].size(); i++) {
int childnode = adj[node][i].first;
if (childnode == pnode) continue;
set_tree(childnode, node, lv + 1, adj[node][i].second);
}
}
void init() {
int u, v, w;
cin >> n;
for (int i = 0; i < n - 1; i++) {
cin >> u >> v >> w;
adj[u].push_back({ v, w });
adj[v].push_back({ u, w });
}
maxlevel = (int)floor(log2(100001));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= maxlevel; j++) {
parent_dist[i][j][0] = 0;
parent_dist[i][j][1] = INF;
}
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(NULL);
init();
set_tree(1, 1, 1, 0);
cin >> k;
int f, s;
for (int i = 0; i < k; i++) {
cin >> f >> s;
p result = get_answer(f, s);
printf("%d %d\n", result.first, result.second);
}
return 0;
}
|
cs |
'알고리즘 > BOJ 문제풀이' 카테고리의 다른 글
[DP] BOJ 1006 습격자 초라기 (0) | 2021.01.31 |
---|---|
[MST] BOJ 16950 레드 블루 스패닝 트리 2 (0) | 2021.01.29 |
[LCA] BOJ 1761 정점들의 거리 (0) | 2021.01.28 |
[DFS] BOJ 1103 게임 (1) | 2021.01.25 |
[DFS] BOJ 2001 보석 줍기 (1) | 2021.01.25 |